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Abstract
We study a radiationless transition in a polyatomic molecule when the electronic
energy of an excited electronic state is transferred to the vibrational degrees
of freedom of the nuclei, and when some nuclear coordinates change abruptly.
This jump between the donor energy surface and the acceptor one gives the
initial conditions for the subsequent dynamics on the acceptor surface, and
the partition of energy between competing accepting modes. In the Wigner
representation, the physical problem of recognizing the accepting modes for
a radiationless vibronic relaxation reduces to the mathematical problem of
finding the maximum of a function of many variables under a constraint.
The function is the initial Wigner function of the nuclei and the constraint is
energy conservation. In a harmonic approximation for the potential surfaces,
the problem is equivalent to finding the distance from a given point to a
multidimensional ellipsoid. This geometrical problem is solved in closed form.
For nonharmonic potentials, the optimization problem is solved perturbatively.

PACS numbers: 33.50.Hv, 82.20.Rp, 03.65.Sq, 2.30.Wd

1. Introduction

Molecules are made of heavy particles, the nuclei, and light particles, the electrons. In the
Born–Oppenheimer approximation, one uses this separation of scales in mass, and hence in
velocities, to obtain electronic terms. Each electronic term corresponds to some wavefunction
of the electrons: S0 is the ground electronic state, S1 and S2 the first and second singlet excited
states, respectively, etc. For a given electronic term, the nuclei move on a potential surface
created by the electrostatic repulsion between them and the attractive force of the chemical
bonds that the electrons create. As long as a molecule stays in the same electronic state,
the motion of the nuclei can be analysed by propagating wave packets or by a semiclassical
solution for the Schrödinger equation or a classical solution of the equation of motion with

0305-4470/02/071769+21$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1769

http://stacks.iop.org/ja/35/1769


1770 A V Sergeev and B Segev

a given potential. What happens to the nuclei during an electronic transition, say a radiative
one, in which a photon is emitted or absorbed, or in a radiationless (forbidden) transition?
Usually, nothing happens. Since the nuclei are so heavy and the electronic transition is so fast,
the initial conditions for the motion of the nuclei on the accepting potential surface are then
given by the position and velocity of the nuclei on the donor potential surface. This is called
a vertical transition. Sometimes, however, a vertical transition cannot take place, for example
when it violates energy conservation. In this case, the nuclei must ‘jump’ during the electronic
transition. The jump can be a change in the position or momentum of one or many nuclei
on the fast time scale of the electronic transition. Predicting this jump for each molecule and
transition is a difficult problem and an old one in molecular physics and photochemistry. We
have developed a simple method to predict this jump. In a number of cases our results indicate
that the dimension of the problem reduces considerably: if only one nucleus moves out of,
say, 14 in a given molecule, we need not consider the other 13 nuclei with the same careful
detailed analysis when calculating and studying properties of the transition. Usually one form
of motion of the nuclei, which is called the accepting mode (and need not be a normal mode),
does all the ‘jumping’, whereas the rest of the degrees of freedom undergo a practically vertical
transition. The theory of surface jumping, as we call this process, was developed in [1], where
it was also applied to a simple model. Recently, we have applied it to a 30-dimensional model
of the benzene molecule.

The mechanism of surface jumping is important for applications in molecular physics
and photochemistry [2, 3]. The subject of this paper, however, is not the application
of this mechanism to specific molecules but the general mathematical problem one faces
when analysing these jumps. Here we aim at a rigorous formulation of the problem
and its general formal solution. The physical system is presented in section 2, and the
mathematical formulation of the problem is given in section 3. The complete solution in the
harmonic approximation, examples of simple cases and corrections due to anharmonicity are,
respectively, studied in sections 4, 5 and 6. Section 7 gives the conclusions.

2. The physical system

Let us consider a molecule described by a potential V (R, r), where R and r are coordinates
of the nuclei and electrons, respectively. In the adiabatic approximation, the quantum states
of the molecule are determined in two steps. First, the Schrödinger equation is solved with
respect to the coordinates of the electrons for an arbitrary frozen configuration of the nuclei
described by coordinates R that are treated as parameters of the Schrödinger equation. The
result is an eigenfunction ϕn(r ; R) and an eigenvalue Un(R), where n is a set of electronic
quantum numbers. The second step is to solve the Schrödinger equation with respect to the
coordinates of the nuclei, R, in an effective potential Un(R) (which was found in the first
step), and to find eigenfunctionsχN,n(R) and eigenvaluesEN,n, where N is a set of vibrational
and rotational quantum numbers of the nuclear motion (in this equation, n are parameters
because the potential Un(R) depends on n). The result of the adiabatic approximation is
wavefunctions of the form

�N,n(R, r) = χN,n(R)ϕn(r ; R) (1)

and the corresponding energiesEN,n. Even when the adiabatic approximation does not apply,
one can use these wavefunctions as a basis set.

We study the following problem. Let some initial state �(NI,nI) of a molecule have
quantum numbers (NI, nI). Now, suppose that there exist several possible final states with
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another set of electronic quantum numbers nF and different sets of nuclear quantum numbers
NF, e.g. (

N
(1)
F , nF

)
,
(
N
(2)
F , nF

)
,
(
N
(3)
F , nF

)
, . . . . (2)

Since the state�(NI,nI) is actually a mixed quantum state due to small nonadiabatic effects,
in the process of its evolution in time there is a nonzero probability of finding the molecule in
one of the states (2) even if it was initially prepared in the state (NI, nI). According to the theory
of radiationless transitions [4], this probability is maximal for states having the same energy
as the initial state (NI, nI), and is proportional to the density of final states multiplied by the
square of the Franck–Condon integral—an overlap integral between the nuclear components
of the wavefunctions,∫

χNI,nI(R)χNF,nF(R) dR (3)

where here and in the following all integrals are from −∞ to +∞.
The purpose of this study is to develop a method of choosing a state (N∗

F , nF) or
a superposition of such states among all possible final states (2) satisfying the energy
conservation condition

E(N∗
F , nF) = E(NI, nI) (4)

for which the square of the integral (3) reaches its maximum. This state is the most preferable
accepting mode for a radiationless transition.

The idea of our approach is to use the Wigner transformations of the wavefunctions. The
Wigner transform of a given wavefunction ψ(R) is defined as

ρ(R,P ) =
(

1

2π

)N ∫
dη e−iP ·ηψ∗(R + η/2)ψ(R − η/2) (5)

where N is the number of independent coordinates. Here and henceforth we use units where
h̄ = 1. In the Wigner representation, a squared overlap integral can be rewritten as an integral
over phase space coordinates,∣∣∣∣

∫
ψ∗

1ψ2 dR

∣∣∣∣
2

= (2π)N
∫ ∫

dR dPρ1ρ2 (6)

where ρ1 = ρ1(R,P ) and ρ2 =ρ2(R,P ) are Wigner transforms of the functionsψ1 = ψ1(R)
and ψ2 = ψ2(R), respectively.

The total rate of transition from a state (NI, nI) to a manifold of states (NF, nF) with a
definite nF and all possible NF is proportional to a sum

∑
E(NF,nF)=E

(∫
χNI,nI(R)χNF,nF(R) dR

)2

(7)

where both the Franck–Condon factor and the density of final states are included in the
expression,E = E(NI, nI), and χNI,nI(R) is assumed to be real. In terms of Wigner functions,
(7) is proportional to

(2π)N
∫ ∫

dR dPρNI,nI

∑
E(NF,nF)=E

ρNF,nF (8)

where ρN,n = ρN,n(R,P ). Here we study the expression in (8), which is to be integrated. We
are especially interested in finding a maximum of this integrand. The importance of the point
of maximum of the phase space integrand was stressed in [1], where the phase space derivation
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of propensity rules for energy transfer processes between Born–Oppenheimer surfaces was
presented.

We use the following approximation for the second factor in the integrand of (8):

(2π)N
∑

E(NF,nF)=E
ρNF,nF(R,P ) = δ (HF(R,P )− E) (9)

which is equivalent to replacing this function by the zero-order classical term of its
semiclassical expansion in powers of h̄2 [5, 6]. The approximation (9) reduces the integral (8) to∫

HF(R,P )=E
|∇HF|−1ρNI,nI(R,P ) dR dP (10)

where |∇HF| = [
(∇RHF)

2 + (∇PHF)
2
]1/2

is the gradient of the function HF in phase space.
The rest of the paper is devoted to finding a maximum of the Wigner function ρNI,nI(R,P ) on
an equipotential surface defined through the equation HF(R,P ) = E for both harmonic and
anharmonic potentials. In doing so we set the ground for the future analysis of radiationless
transitions of specific large polyatomic molecules. In addition, we formulate and prove some
general yet simple rules of thumb for predicting the accepting mode of a given radiationless
transition.

3. Formulation of the problem

The Hamiltonian of the acceptor is approximated by a harmonic oscillator plus third-order
anharmonic terms,

HF = 1

2

N∑
i=1

(
p2
i + ω2

i q
2
i

)
+

1

6

N∑
i,j,k=1

vijkqiqjqk (11)

where pi and qi are mass-weighted normal momenta and coordinates, qi = Ri
√
mi and

pi = Pi/
√
mi . Similarly, the Hamiltonian of the donor surface is

HI = 1

2

N∑
i=1

(
p′
i

2 + ω′
i

2
q ′
i

2) +
1

6

N∑
i,j,k=1

v′
ijkq

′
iq

′
j q

′
k. (12)

The mass-weighted normal coordinates p′
i = P ′

i /
√
m′
i and q ′

i = R′
i

√
m′
i are generally some

linear combinations of pi and qi,

q′ = S
(
q − q(0)

)
p′ = Sp (13)

where S is an orthogonal N × N matrix (ST = S−1) and the vector q(0) corresponds to the
change of the equilibrium structure of the molecule relative to the donor state. An element
Sij �= δij only when the ith and jth normal coordinates have the same symmetry (so called
Duschinsky rotation). The same matrix transforms both q and p since the transformation
preserves the commutation relations [q ′

i , p
′
j ] = [qi, pj ] = ih̄δij and since the Hamiltonians

(11) and (12) have the same kinetic energy term,
∑N

i=1 p
2
i = ∑N

i=1 p
′
i
2.

We restrict ourselves to the ground state in the donor potential,

χNI,nI(q) = C exp

(
−1

2

N∑
i=1

ω′
iq

′
i

2

)
+ χ1 (14)
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where C is a normalization factor, and χ1 is the first anharmonic correction (a linear function of
the coefficients vijk) derived in section 6. The Wigner transform of χNI,nI(q) is C ′ exp(−2W),
where C′ is a constant prefactor,

W = 1

2

N∑
i=1

1

ω′
i

(
p′
i

2 + ω′
i

2
q ′
i

2) +W1 (15)

andW1 is the first anharmonic correction derived in section 6.
The jumping between the donor and acceptor states occurs at a point of minimum W

subject to a constraint HF= E. There are several approaches to solving a problem of constrained
minimum [7]. One could use a method of direct substitution by eliminating one of the variables
from the function W . This method is not symmetrical with respect to the treatment of the
variables {xi} (i = 1, 2, . . . ,M,M = 2N) that are arguments of the functions W and H,
i.e. {qi, pi} for i = 1, 2, . . . , N (later, these collective variables will be redefined). To avoid
distinction between the variables, we use a method of Lagrange multiplier by introducing an
undetermined constant λ and forming a function F(x, λ) = W(x)− λH(x). This function is
to be made stationary with respect to all variables {xi}, so that

∂F

∂xi
(x∗, λ∗) = 0 (16)

for i = 1, 2, . . . , M, and the constant λ∗ is to be selected so that

H(x∗) = E. (17)

Conditions (16) and (17) provide a system of M + 1 equations for M + 1 unknowns,
x∗

1 , x
∗
2 , . . . , x

∗
M , and λ∗ which can be briefly summarized as

∇W = λ∇H H = E. (18)

The Lagrange multiplier λ has a concrete physical meaning. Since

d

dE
W(x∗) =

M∑
i=1

∂W

∂xi
(x∗)

dx∗
i

dE
= λ∗

M∑
i=1

∂H

∂xi
(x∗)

dx∗
i

dE
= λ∗ d

dE
H(x∗) = λ∗ (19)

the parameter λ∗ is the sensitivity of the minimum value of W to the energy gap.
After finding all the stationary points x∗, it is necessary to determine for each point whether

it is a minimum of the function W under restriction (17), a saddle point or a maximum, and
which of all the local minima gives the smallest value for W . The global minimum found in
this way is a true solution of the optimization problem, see figure 1.

In order to efficiently find this jumping point, it is convenient to use variables xi with
which both HF andW assume a particularly simple form:

HF = 1

2

M∑
i=1

x2
i +H1 = E (20)

W = 1

2

M∑
i=1

αi (xi −Xi)
2 +W1 (21)

where H1 and W1 are anharmonic corrections.
The transformation from qi and pi (i = 1, 2, . . . , N ) to xi (i = 1, 2, . . . , M = 2N ) is

performed in the following way. In normal coordinates of the acceptor, and after defining
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-2 -1 0 1 2
x1

-2

-1

0

1

2

Figure 1. Finding the minimum of the function W under the energy constraint H = E. For this
example, W(x1, x2) = 0.4(x1 −0.1)2 + 0.6(x2 −0.2)2 + 0.05[(x1 −0.1)3 + (x1 −0.1)2(x2 −0.2)+
(x1 − 0.1)(x2 − 0.2)2 − (x2 − 0.2)3], H(x1, x2) = 1

2 x
2
1 + 1

2 x
2
2 + 0.1[−x3

1 − 3x2
1x2 + 2x1x

2
2 ] and

E = 1. Dashed lines represent stationary points of the function F = W − λH , equation (16).
Energy-constraint points satisfying equation (17) lie on the border of the dark area, H < E (the
darker the colour, the greater is the functionW ). Ellipses represent curves of constantW . Stationary
points of the functionW under the energy constraint are marked by circles. A point with the smallest
W marked by a large circle is the solution of the problem: x∗

1 = −1.24, x∗
2 = −0.08,W ∗ = 0.62.

q̃i ≡ ωiqi , equations (11) and (15) read

HF = 1

2

N∑
i=1

(
p2
i + q̃2

i

)
+H1 (22)

W = 1

2

N∑
i,j=1

(
W

(q)

ij

(
q̃i − q̃

(0)
i

)(
q̃j − q̃

(0)
j

)
+W(p)

ij pipj
)

+W1 (23)

where

W
(p)

ij ≡
N∑
k=1

1

ω′
k

SkiSkj W
(q)

ij ≡
N∑
k=1

ω′
k

ωiωj
SkiSkj . (24)

Defining x̃i = q̃i , x̃
(0)
i = q̃

(0)
i and Wij = W

(q)

ij for i, j = 1, 2, . . . , N; x̃i = pix̃
(0)
i = 0 and

Wij = W
(p)

ij for i, j = N + 1, N + 2, . . . , 2N ; and Wij = 0 otherwise, we get

HF = 1

2

M∑
i=1

x̃2
i +H1 W = 1

2

M∑
i,j=1

(
Wij

(
x̃i − x̃

(0)
i

)(
x̃j − x̃

(0)
j

))
+W1.

It is now straightforward to obtain equations (20) and (21) by diagonalizing the matrix W with
the elements Wij . Namely, construct a unitary matrix U so that U−1WU is a diagonal matrix
with diagonal matrix elements αi (i = 1, 2, . . . , M ). The new coordinates xi (i = 1, 2, . . . ,
M = 2N ) are then given by x ≡ U−1x̃ and X ≡ U−1x̃(0).
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Note that the new coordinates do not maintain their relations as conjugate coordinates and
momenta. Note also, that this transformation could be performed starting from any coordinate
system (not necessarily normal coordinates of the acceptor).

4. Harmonic approximation

In this section we solve the problem of finding the accepting modes for a radiationless transition
in the harmonic approximation. Results of the harmonic approximation are later used as the
zero-order terms in a perturbative approach to the anharmonicities.

4.1. Finding the minimum of W

We are looking for a minimum of W , where

W = 1

2

M∑
i=1

αi (xi −Xi)
2 (25)

subject to the constraint

HF = 1

2

M∑
i=1

x2
i = E. (26)

The parameters characterizing the transition are the energy gap E, the normalized
displacements {Xi} between the acceptor and donor potential surfaces and the parameters
{αi}. These parameters define the minimization problem that determines the jumping point
x∗ characterizing the nature of the transition.

It is interesting to note that in another coordinate system, yi = α
1/2
i (xi −Xi), the problem

has a simple geometrical interpretation: finding the minimum of W = 1
2

∑
y2
i under the

constraint HF = E is equivalent to finding the point on the ellipsoid
∑(

α
−1/2
i yi + Xi

)2 = E

of the closest approach to the origin, i.e. the distance from this ellipsoid to the origin. Let us
implement the method of the previous section for the quadratic functions given by formulae
(25) and (26).

The equations for the stationary point, (16),

αi(x
∗
i −Xi)− λ∗x∗

i = 0 (27)

are solved explicitly,

x∗
i = αi

αi − λ∗Xi (28)

for i = 1, . . . , M if λ∗ �= αi . By substituting (28) into (26), we get an equation for λ∗,

h(λ∗) = E (29)

where the function h(λ) is the Hamiltonian H expressed through λ,

h(λ) = 1

2

M∑
i=1

(
αi

αi − λ

)2

X2
i . (30)

By substituting (28) into (25), the value of the function W at its stationary point is expressed
as a function of λ,

W ∗ = w(λ∗) (31)
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where

w(λ) = 1

2

M∑
i=1

αi

(
λ

αi − λ

)2

X2
i . (32)

Since equation (29) reduces to a polynomial equation of degree 2M, it has at most 2M real
roots each of which corresponds to some stationary point x∗ given by (28). Let λ1 and λ2 be
two different roots of equation (29), i.e. h(λ1) = h(λ2) = E. In order to select the smallest
of the corresponding values of W,w(λ1) and w(λ2), we note that

w(λ2)−w(λ1) = 1

2
(λ1 + λ2)[h(λ2)− h(λ1)] +

1

4
(λ2 − λ1)

3
M∑
i=1

[
αiXi

(αi − λ1)(αi − λ2)

]2

.

(33)

The validity of identity (33) can be easily checked by substituting expressions (30) and (32) for
the functions h andw. Since h(λ2)−h(λ1) = 0 and the sum over i is positive,w(λ2)−w(λ1)

has the same sign as λ2 −λ1. Thus for harmonic potentials, the smaller the root λ∗, the smaller
is the functionW .

For convenience, we re-enumerate henceforth the variables (αi,Xi, xi) (i = 1, 2, . . . ,M)
so that α1 = α2 = · · · = αL = αmin and αj > αmin for j > L, where αmin is the minimal
number among αi (i = 1, 2, . . . ,M), and L is the number of entries of αmin in the set
{αi} (i = 1, 2, . . . ,M). When λ increases from −∞ to αmin, the function h(λ)monotonically
increases from 0 to

E1 = 1

2

∑
i>L

(
αi

αi − αmin

)2

X2
i (34)

if X1 = X2 = · · · = XL = 0, otherwise it increases from 0 to E1 = ∞.
There are two possible cases. In the first case, when X1 = X2 = · · · = XL = 0 and

E > E1, the minimal root of (17) is λ∗ = αmin, x
∗
j for j> L are expressed through λ∗ by (28),

and from (26) we get a set of possible (x∗
1 , x

∗
2 , . . . , x

∗
L). In the second case, when E � E1,

there is a unique root λ∗ of equation (29) in the interval (−∞, αmin), the coordinates of this
minimum are expressed through λ∗ by (28), and the minimum of W is given by (31).

4.2. Results

Let us summarize the solution in the harmonic approximation. Given an initial Wigner function
and an accepting Hamiltonian, applying a harmonic approximation and a change of variables,
re-enumerating the variables so that α1 = α2 = · · · = αL equal the smallest of all αi , and
explicitly solving equations (25) and (26), we get the jumping point for the radiationless
transition. There are two cases:

Case I. In this case (whenX1 = X2 = · · · = XL = 0 and E > E1), there exist several points
of minimum with the same value ofW . If L = 1, then two jumping points differ in the sign of
the first coordinate

x∗
1 = ±[2(E − E1)]1/2. (35)

For i �= 1 the coordinates are

x∗
i = αi

αi − αmin
Xi. (36)

If L > 1, then (x∗
1 , x

∗
2 , . . . , x

∗
L) fill an (L − 1)-dimensional sphere of radius [2(E − E1)]1/2,

1
2

(
x2

1 + x2
2 + · · · + x2

L

) = E − E1 (37)
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which follows from equation (26). The rest of the coordinates, for i > L, are defined
unambiguously by equation (36).

The minimum ofW is

W ∗ = αminE − αmin

2

∑
i>L

αiX
2
i

αi − αmin
. (38)

Below, for example in equation (49), we assume that L = 1, or that αi > α1 for
i = 2, 3, . . . ,M .

Case II. This case applies when at least one of Xi with i � L is nonzero, or when
X1 = X2 = · · · = XL = 0 and E � E1. The coordinates at the jumping point are
given by equation (28):

x∗
i = αi

αi − λ∗
Xi (39)

where λ∗ � αmin is the unique root of

1

2

∑
i

(
αi

αi − λ

)2

X2
i = E. (40)

4.3. Discussion

In a radiative vertical transition, only displaced modes are excited. The initial conditions for
dynamics on the accepting potential energy surface, which we call the jumping point, are then
given by

x∗
i = Xi. (41)

The energy that goes into vibration and the value of the logarithm of the Wigner function at
the jumping point are then given, respectively, by

E0 = 1

2

M∑
i=1

α2
i X

2
i W0 = 1

2

M∑
i=1

αiX
2
i . (42)

Energy is conserved because the photon takes the rest of the energy

Ephoton = E − E0 (43)

where E is the energy gap between the minima of the donor and accepting surfaces.
In a radiationless transition, there is no photon. The released electronic energy must

become vibrational energy. The two cases I and II differ in how this energy is distributed
between the different vibrations.

In case I, despite the fact that X1 = 0, i.e. there is no displacement along the x1 direction
in phase space (be it a coordinate or momentum), x1 is an accepting mode for this transition
because the initial phase space quasidistribution comes closest to the final energy hypersurface
in this direction. We shall refer to x1 as the major accepting mode. This mode, which absorbs
the excess energy E − E1, plays the same role as electromagnetic field modes during a radiative
transition, when an emitting photon accepts the excess energy relative to the vertical transition.

In contrast, case II does not look essentially different from a vertical transition. Namely,
only displaced modes are involved in the transition, and the jump for each coordinate involved
is proportional to the displacement of this mode. No momentum jumps exist, since the
Hamiltonians are never displaced along a momentum phase space coordinate. The smaller the
|λ∗|, the closest is the transition to a vertical one, as αi/(αi − λ∗) is closer to 1. Physically a
small |λ∗| corresponds to the special case when HF (X) = E.
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4.4. Dependence on the energy gap

In case I the dependence on the energy gap is trivial. All the phase space coordinates at
the jumping point but one do not depend on the energy gap, but only on their respective
displacements and the relative difference of the parameters αi between each of them and the
major accepting mode. x∗

1 , the jumping coordinate of the major accepting mode, grows with
the energy gap. The larger the energy gap, the more important is this accepting mode.

In order to consider the properties of the jumping point as a function of the energy gap E
in case II, for both limits of small and large E, equation (40) is rewritten here in a simplified
form

M∑
i=1

(
βi

αi − λ

)2

= 1 (44)

where βi = αi |Xi |(2E)−1/2.

For a small energy gap, equation (44) has two real roots λ = ±(∑
β2
i

)1/2
. The solution

corresponding to the minimal (negative) root asymptotically behaves as

λ∗ = −(E0/E)
1/2 (45)

x∗
i = αiXi(E/E0)

1/2 (46)

W ∗ = W0 − 2(EE0)
1/2. (47)

In the limit of a large energy gap, when βi → 0, equation (44) has 2M roots
λ = αi ± βi (i = 1, 2, . . . ,M). The minimal root corresponding to the minimum of W
is λ∗ = α1 −β1. It is clear thatX1 = 0 belongs to case I for sufficiently large E. A perturbative
solution, with ε = signX1(2E)−1/2 as a small parameter, shows that for X1 �= 0 as well,
although λ∗ depends on the energy, this dependence approaches zero for a large enough
energy gap, for which

x∗
1 ≈

√
2E sign(X1) (48)

x∗
i �=1 = αi

αi − α1
Xi − αiα1

(αi − α1)2

|X1|Xi√
2E

+O(ε2). (49)

Here, again, in the limit of a large energy gap x1 is the major accepting mode regardless of it
being displaced or not. If the displacementX1 = 0 there are two jumping points with opposite
signs, whereas if X1 �= 0 the sign of the jump is determined by the sign of the displacement.

5. Simple cases

In the previous section a complete solution in the harmonic approximation was derived. For any
given radiationless transition, the accepting mode(s) can be found by applying this procedure.
To gain some intuition, here we apply it to some simple examples. We separately check the
influence of the frequencies, Duschinsky rotations and the displacements on the results. We
also check the predictive power of the results on the energy distribution between the modes,
for example, where this energy distribution is well defined.

5.1. Frequencies

In the simplest case, when the normal coordinates of the initial and final states are the same
(q = q′,p = p′) andmi = m′

i , the set of variables {x1, x2, . . . , xM} consists of
√
miωiRi and
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Figure 2. The dependence of the smallest four eigenvalues αi, i = 1, 2, 3, 4, on the rotation angle
ϕ for the example in section 5.2. The rest of the eigenvalues {1/ω′

2, A + [A2 − a1a2]1/2} are larger
than 3. The smallest eigenvalue αmin determines the minimum of W (Wmin = αminE).

1/
√
miPi , and the set {α1, α2, . . . , αM } consists of ω′

i/ω
2
i and 1/ω′

i sorted in ascending order.
Since E1 = 0, this system belongs to case I considered in the previous section, with
x∗

1 = ±√
2E and x∗

2 = x∗
3 = · · · = x∗

M = 0. There is only one accepting mode. In terms of
normal mode coordinates, it means that if the minimum number in the set

{
ω′
i/ω

2
i , 1/ω′

i

}
is

α1 = ω′
i0

/
ω2
i0

, then the launching point for the transition is at Ri0 = ±(
2E/mi0

)1/2/
ωi0 and

the other coordinates and momenta are zero. If α1 = 1/ω′
i0

, then Pi0 = ±(
2Emi0

)1/2
and the

other coordinates and momenta are zero.

5.2. Duschinsky rotation

Now, suppose that q0 = 0 and mi = m′
i = m,N = 2 and the matrix S is a unitary matrix of

general form

S =
(

cosϕ sinϕ
− sinϕ cosϕ

)
where ϕ is a rotation angle. Then, {α1, α2, α3, α4} consists of the following four numbers:{
A ± [

A2 − a1a2
]1/2

, 1/ω′
1, 1/ω′

2

}
, where A = 1

2 (a1 + a2) cos2 ϕ + 1
2 (b1 + b2) sin2 ϕ, a1 =

ω′
1

/
ω2

1, a2 = ω′
2

/
ω2

2, b1 = ω′
2

/
ω2

1, b2 = ω′
1

/
ω2

2. If ϕ = 0, then it is {a1, a2, 1/ω′
1, 1/ω′

2}. If
ϕ = π/2, then it is {b1, b2, 1/ω′

1, 1/ω′
2}.

The next example is numerical. It demonstrates that a Duschinsky rotation can influence
the jumping point and the value of the Wigner function at that point. Suppose that q0 = 0 and
mi = m′

i = m,N = 3,

S =

 cosϕ sin ϕ 0

− sin ϕ cosϕ 0
0 0 1




ω1 = 0.6, ω2 = 0.3, ω3 = 0.603, ω′
1 = 0.595, ω′

2 = 0.298, ω′
3 = 0.6 (ω′

i are taken slightly
smaller than ωi as usually happens in molecules). The dependence of {αi} on ϕ is shown in
figure 2. The jumping point for ϕ > 0.033 differs from that at ϕ = 0. Here, since αi are
independent of the energy, and because of the fact that dWmin/dE = αmin,Wmin = αminE and
the value of the Wigner function is proportional to exp(−2αminE).
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5.3. Displacements

Consider a simple case with nonzero displacement, with N = 2, mi = m′
i , and q0 = (Q, 0),

i.e. q ′
1 = q1 −Q,q ′

2 = q2. We define

λ∗ = ω′
1

ω2
1

[
1 −

(
m1ω

2
1Q

2

2E

)1/2
]

(50)

σ = min

(
λ∗,

ω′
1

ω2
1

,
ω′

2

ω2
2

,
1

ω′
1

,
1

ω′
2

)
. (51)

There are four subcases. (1) If σ = 1/ω′
1 or σ = λ∗, there is only one nonzero jumping

coordinate

q∗
1 = Q

/ (
1 − λ∗ω2

1/ω
′
1

)
. (52)

Otherwise, there are two nonzero jumping coordinates q∗
1 and (2) q∗

2 if σ = ω′
2

/
ω2

2, (3) p∗
1 if

σ = 1/ω′
1, (4) p∗

2 if σ = 1/ω′
2.

The larger the displacement and smaller the energy gap, the smaller is λ∗, and q1

becomes the only accepting mode. In contrast, in the limit of a very large energy gap,
the displacement no longer plays a role in the minimization problem predicting the jump.
In this limit, the frequencies alone determine the jump as in the previous case of zero
displacement.

5.4. Predictive power of the jumping point

The latter case with additional simplificationsm1 = m2 = 1 and ω1 = ω2 = 1 was considered
in [1]. This paper has plots of the initial wavefunction

�I(q1, q2) = ψ0(q1 −Q)ψ0(q2) (53)

versus the final wavefunction

�F(q1, q2) =
n∑
j=0

Cjψj(q1)ψn−j (q2) (54)

where ψi(q) is a harmonic oscillator wavefunction, E = n + 1, and Cj is an overlap integral
between the ground state �I and the excited wavefunction ψj (q1)ψn−j (q2).

It was demonstrated that the pattern of the final wavefunction depends on the position
of the phase space jump. Here, we reconsider six numerical examples from the paper [1]
by a quantitative comparison with the phase space results. We calculate partial energies of
excitations along two different modes,

E1 = P−1
E

n∑
j=0

C2
j

(
j +

1

2

)
E2 = P−1

E

n∑
j=0

C2
j

(
n− j +

1

2

)
(55)

where PE = ∑n
j=0 C

2
j is the total probability of a transition to EF = E. E1 and E2 are well

defined physical observables because the two-dimensional harmonic oscillator considered here
is separable along q1 and q2. They can be calculated exactly and compared to their phase space
counterparts
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Table 1. Accuracy of the prediction, by the phase space method, of the partition of energy between
different modes for the model of two coupled harmonic oscillator, HI = 1

2 (ω
′
1

2
p2

1 +ω′
2

2
p2

2 + (q1 −
Q)2 + q2

2 ),HF = 1
2 (p

2
1 + p2

2 + q2
1 + q2

2 ), for examples studied earlier in [1]. The percentage of
energy going to the first mode is given by equation (57).

Parameters R1 (%)

Label ω′
1 ω′

2 Q n = 2 n = 6 n = 12 n = 20 n = 30

a 0.02 0.18 0 60.4 74.0 82.5 91.6 94.5
83.3a 92.9a 96.2a 97.6a 98.4a

b 10 2.2 0 71.8 87.8 93.8 96.3 97.5
83.3a 92.9a 96.2a 97.6a 98.4a

c 0.45 0.01 0 25.3 10.4 5.4 3.3 2.2
16.7a 7.1a 3.8a 2.4a 1.6a

d 2 18 0 24.8 10.1 5.2 3.2 2.2
16.7a 7.1a 3.8a 2.4a 1.6a

e 2 0.1 3 82.6 82.0 44.9 27.2 18.3
83.3a 78.4a 42.2a 26.1a 17.7a

f 2 10 3 82.6 82.0 44.9 27.2 18.3
83.3a 78.4a 42.2a 26.1a 17.7a

a The phase space result R∗
1 .

E∗
1 = 1

2

(
p∗

1
2 + q∗

1
2) + 1

2 E∗
2 = 1

2

(
p∗

2
2 + q∗

2
2) + 1

2 (56)

where q∗
1 , p

∗
1, q

∗
2 , p

∗
2 are the phase space coordinates of the jump

E = E∗
1 + E∗

2 = n + 1.

Note that the classical energies in equation (56) are corrected by incorporating the quantum
energy of zero vibrations, 1/2. Without the zero vibrational energy, we found that the results
are less satisfactory.

We compare the percentage of energy going into the first mode, exact versus phase space
result

R1 = E1/E R∗
1 = E∗

1/E. (57)

Table 1 shows that R1 and R∗
1 agree within 6% for all examples with N � 20. The

examples are chosen in pairs (a, b), (c, d) and (e, f ) to demonstrate that very different initial
states can give similar results for R1 and R∗

1 .
We have also compared the exact wavefunctions with the trajectory of a classical particle

moving in the potential HF with the initial conditions of the phase space coordinates of the
jump: at the position (q∗

1 , q
∗
2 ), with momentum (p∗

1, p
∗
2). The results are depicted in figure 3.

The agreement is remarkable.

6. Anharmonicity

In this section we study the effect of anharmonicities on the jump. We consider anharmonic
potential surfaces for the donor’s and acceptor’s Hamiltonians, focusing here on Hamiltonians
of harmonic oscillators perturbed by cubic anharmonic terms as in equations (11) and (12).
Generalization to any polynomial anharmonicity is straightforward.
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Figure 3. Density plot of the final wavefunction. The white dot marks the jumping point (q∗
1 , q

∗
2 )

that with (p∗
1 , p

∗
2) defines the initial conditions for the classical trajectory shown by a light line or

an ellipse. Here, n = 10. The parameters ω′
1, ω

′
2 and Q are listed in table 1. In example (e), we

show only one of two symmetric jumping points of equal significance.

6.1. The ground-state Wigner function for an anharmonic oscillator

The Hamiltonian of the donor, equation (12), is rewritten in this section as

H(q,p) = 1

2

N∑
i=1

p2
i + V (q)

(58)

V (q) = 1

2

N∑
i=1

ω2
i q

2
i + ξV1(q) V1(q) = 1

6

N∑
i,j,k=1

vijkqiqjqk

where we omit the primes, although we have in mind the excited donor surface which is
marked by primed variables in the previous and subsequent sections. We omit the subscript
‘I’ in HI and VI too. In (58), we introduce a dummy expansion parameter ξ = 1.

Rewriting the Schrödinger equation for the ground state wavefunction �(q) in terms of
the function S(q) ≡ − ln�(q) [8] gives

− 1

2

N∑
i=1

(
∂S

∂qi

)2

+
1

2

N∑
i=1

∂2S

∂q2
i

+ V (q)− E = 0. (59)
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Without the second sum, equation (59) reduces to the Hamilton–Jacobi equation for the action
of a classical particle moving in the potential E − V (q). In such a quasiclassical limit, a
perturbation theory for S(q) is easily developed [9]. The more general quantum case which is
considered here is still solvable analytically, but the corrections obtained have more monomial
terms.

The function S(q) and the energy E are expanded in powers of ξ ,

S(q) = S0(q) + ξS1(q) +O(ξ2) (60)

E = E0 + ξE1 +O(ξ2) (61)

where the zero-order terms are

S0(q) = 1

2

N∑
i=1

ωiq
2
i + const E0 = 1

2

N∑
i=1

ωi (62)

and the constant in S0(q) is responsible for the normalization of the wavefunction.
Let us find the first-order anharmonic corrections. To first order in ξ , equation (59)

reduces to a linear equation with respect to the number E1 and the function S1(q)

−
N∑
i=1

∂S0

∂qi

∂S1

∂qi
+

1

2

N∑
i=1

∂2S1

∂q2
i

+ V1(q)− E1 = 0. (63)

Let us suppose that S1(q) is a polynomial, then, as soon as the inhomogeneous part of equation
(63), V1(q)− E1, becomes a third-degree polynomial, it may be shown that the solution is at
most a third-degree polynomial too,

S1(q) =
N∑
i=1

Aiqi +
1

2

N∑
i,j

Bij qiqj +
1

6

N∑
i,j,k=1

Cijkqiqjqk. (64)

We substitute (64) and (58) in equation (63) and solve to obtain

E1 = 0 Ai = 1

2ωi

N∑
j=1

vijj

ωi + 2ωj
Bij = 0 Cijk = vijk

ωi + ωj + ωk
. (65)

Having calculated S1, we would like to calculate the logarithm of the Wigner function
expanded in powers of ξ :

ρ(q,p) = C ′ exp (−2W(q,p)) W(q,p) = W0(q,p) + ξW1(q,p) +O(ξ2) (66)

where

W0(q,p) = 1

2

N∑
i=1

(
p2
i

ωi
+ ωiq2

i

)
(67)

W1(q,p) is the first anharmonic correction to be determined here. Substituting the perturbed
wavefunction

�(q) = [1 − ξS1(q)] exp (−S0(q)) +O(ξ2) (68)

in the definition of the Wigner function, we get

ρ(q,p) ≈
(

1

2π

)N ∫
dη e−ip·η [1 − ξS1(q + η/2)− ξS1(q − η/2)]

× exp [−S0(q + η/2)− S0(q − η/2)] (69)
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and, using equation (65)

W1(q,p) =
∑
i,j

vijj

2ωiωj
qi +

∑
i,j,k

vijk

ωi + ωj + ωk

(
qiqjqk

3
− qipjpk

ωjωk

)
. (70)

The complete expression forW = W0 + ξW1 is obtained by substituting (70) in equation (15)
and changing variables as in section 3 above:

W = 1

2

∑
i

αi(xi −Xi)
2 + ξ

∑
i

γi(xi − Xi) +
ξ

6

∑
ijk

wijk(xi − Xi)(xj −Xj)(xk −Xk)

(71)

where xi are variables collecting coordinates and momenta, and Xi are displacements.
We eliminate linear terms in equation (71) by including them into effective displacements
X̃i = Xi + ξγ /α:

W = 1

2

∑
i

αi x̄
2
i +

ξ

6

∑
ijk

wijkx̄i x̄j x̄k +O(ξ2) (72)

where x̄i = xi − X̃i . When vijj = 0, X̃i = Xi .

6.2. Anharmonic effects on the jump

There are two effects of anharmonicities on the minimization problem that we solve
using equations (18). First, the initial Wigner function is shifted, redefining the effective
displacement between the two potential surfaces as X̃i instead of Xi . Second, third-order
terms are added to the harmonic terms in both W and H. We treat these third-order terms by
perturbation theory, for the functionsH = H(0) +H(1)ξ,W = W(0) +W(1)ξ, where

H(0) = 1

2

∑
i

x2
i H (1) = 1

6

∑
i,j,k

hijkxixjxk (73)

W(0) = 1

2

∑
i

αi x̄
2
i W(1) = 1

6

∑
i,j,k

wijkx̄i x̄j x̄k . (74)

αi, xi, x̄i, wijk have been defined above and hijk are linear combinations of vijk.
Equation (18) is equivalent to

αi x̄i +
ξ

2

∑
j,k

wijkx̄j x̄k = λ


xi +

ξ

2

∑
j,k

hijkxjxk


 (75)

1

2

∑
i

x2
i +

ξ

6

∑
i,j,k

hijkxixjxk = E. (76)

The unknown variables xi (i = 1, . . . ,M) and the Lagrange multiplier λ are searched for in
the form

xi = x
(0)
i + x(1)i ξ + o(ξ) (77)

λ = λ(0) + λ(1)ξ + o(ξ). (78)

In the zero-order approximation (ξ = 0), equations (75) and (76) are

αi x̄
(0)
i = λ(0)x

(0)
i

1

2

∑
i

x
(0)2
i = E
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where x̄(0)i = x
(0)
i − X̃i . In the first order in ξ , equations (75) and (76) are

αix
(1)
i +

1

2

∑
j,k

wijkx̄
(0)
j x̄

(0)
k = λ(0)


x(1)i +

1

2

∑
j,k

hijkx
(0)
j x

(0)
k


 + λ(1)x(0)i (79)

∑
i

x
(0)
i x

(1)
i +

1

6

∑
i,j,k

hijkx
(0)
i x

(0)
j x

(0)
k = 0. (80)

Let us find the first correction to the harmonic approximation for the two cases discussed

above using these formulae.

Case (1). The unperturbed coordinates are given in this case by equations (35) and (36)
whereas the unperturbed Lagrange multiplier is λ(0) = α1. It then follows from (79), for i =
1, that

λ(1) = 1

2x(0)1

∑
j,k

(
ω1jk x̄

(0)
j x̄

(0)
k − α1h1jkx

(0)
j x

(0)
k

)
(81)

and from (79), for i �= 1, that

x
(1)
i = 1

αi − α1


1

2

∑
j,k

(
α1hijkx

(0)
j x

(0)
k −wijkx̄

(0)
j x̄

(0)
k

)
+ λ(1)x(0)i


 i �= 1. (82)

Finally, the remaining unknown variable x(1)1 can be found by substituting (82) into (80),

x
(1)
1 = − 1

x
(0)
1


∑
i �=1

x
(0)
i x

(1)
i +

1

6

∑
i,j,k

hijkx
(0)
i x

(0)
j x

(0)
k


 . (83)

In zero order (harmonic approximation), there are two points of minimum differing by a
sign of x1 with the same Wmin given by (38). In the first-order approximation, Wmin is given
by (86), and it is no longer the same for the two points, corresponding to different signs in
equation (35). So, the true minimum is the one for which (86) is smaller.

Case (2). In this case the unperturbed coordinates and Lagrange multiplier are given by
equations (28) and (40). It follows from (79) that

x
(1)
i = 1

αi − λ(0)


1

2

∑
j,k

(
λ(0)hijkx

(0)
j x

(0)
k − wijkx̄

(0)
j x̄

(0)
k

)
+ λ(1)x(0)i


 . (84)

Inserting (84) into (80), we find

λ(1) = 1

6

(∑
i

x
(0)2
i

αi − λ(0)

)−1 ∑
i,j,k

x
(0)
i

αi − λ(0)

[
3wijkx̄

(0)
j x̄

(0)
k − (

2λ(0) + αi
)
hijkx

(0)
j x

(0)
k

]
. (85)

In this case, we first determine λ(1) by equation (85), and then x(1)i by substituting λ(1) into
equation (84).

W in both cases. In both cases expanding the minimum value of the constrained function W
into a power series Wmin = W(0)

min + W(1)
minξ + O(ξ2), we find that W(0)

min is given by equation
(31), and

W(1)
min =

∑
i

αi x̄
(0)
i x

(1)
i +

1

6

∑
i,j,k

wijkx̄
(0)
i x̄

(0)
j x̄

(0)
k . (86)



1786 A V Sergeev and B Segev

6.3. Anharmonic potentials with no effective displacements

As a simple example, consider the case of no effective displacements and Duschinsky rotation,
with x̄i = xi, x

(0)
i = 0 for all i �= 1 and x(0)1 = ±√

2E. The unperturbed Lagrange multiplier
is λ(0) = α1. It then follows that

λ(1) = 1
2x

(0)
1 (w111 − α1h111) (87)

x
(1)
i �=1 = − 1

2

x
(0)2
1

αi − α1
(wi11 − α1hi11) (88)

x
(1)
1 = − 1

6x
(0)2
1 h111. (89)

W(1)
min = 1

6x
(0)3
1 (w111 − α1h111) . (90)

For ξ �= 0 the two minima W(0)
min + ξW(1)

min corresponding to two different signs of x(0)1 are not
the same, the global minimum is reached when x(0)1 has the opposite sign to ξ(w111 − α1h111).

6.4. A numerical example

Figure 4 shows typical behaviour of the minimum with a change in the anharmonicity.
Evolution of the jumping point, or the location of the minimum, is shown in figure 5. For
ξ < 0.1, the first-order perturbation theory gives good results, but for larger ξ it breaks both
because of the presence of nonlinear terms and an abrupt change of position of the global
minimum.

6.5. Discussion

The following observations can be made: when anharmonicities are small enough to allow
for a perturbative treatment, their influence on the jumping point grows with increasing
energy gap, linearly with energy, and increases for degrees of freedom i for which αi ≈ α1.
There is a compensating effect of the anharmonicities on the two surfaces: their effects
occur with opposite signs. Finally, we note that not all anharmonic potentials could be
treated perturbatively, and that for completely general potential surfaces, an analytic treatment
becomes impossible. In these cases a numerical approach is needed.

7. Summary and conclusions

Intramolecular energy transfer is an important part of many chemical processes. Very often,
energy transfer processes in molecules involve degrees of freedom with a separation of
timescales, for example electronic and vibrational–rotational motion. Sometimes, the electrons
transfer much energy to the vibrations and rotations in a sudden process. This exchange is
usually followed by further intramolecular vibrational energy transfer. The nuclei have to
make a leap in coordinate or momentum to reach the other Born–Oppenheimer surface in such
nonvertical transitions, and the direction of the jump from one surface to another can be very
specific.

A procedure for recognizing the jumping points in phase space in the noncrossing regime
was introduced in [1, 10]. Here we have presented a closed-form complete solution for finding
the jumping point for any transition between harmonic potentials and a perturbative treatment
of the nonharmonic effects.
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Figure 4. Evolution of the minimum of the function W under the energy constraint H = E with
strengthening of the anharmonicity. In W and H, we introduced an overall coupling parameter
ξ :W(x1, x2) = 0.4(x1 − 0.1)2 + 0.6(x2 − 0.2)2 + 0.05ξ [2(x1 − 0.1)2(x2 − 0.2) − 2(x1 − 0.1)
(x2 −0.2)2 + (x2 −0.2)3],H (x1, x2) = 1

2 x
2
1 + 1

2 x
2
2 +0.1ξ [−x3

1 −3x2
1x2 −3x1x

2
2 +x3

2 ], E = 1. The
upper left corner refers to the harmonic approximation (ξ = 0). The position of the global minimum
marked by the largest circle is a discontinuous function of the anharmonicity since between ξ =
0.52 and ξ = 0.53 as well as between ξ = 0.75 and ξ = 0.76, the global minimum swaps with one of
the secondary local minima. This example shows that for strong anharmonicities, the dependence
x∗(ξ) cannot be approximated by an analytic function.

The ingredients needed to predict the quantum jump are the classical Hamiltonian for
the nuclei at the final (accepting) electronic state and the Wigner function of the initial state
exp −2W . In a special coordinate system, described in detail in section 3, both assume the
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Figure 5. The location of the minimum x∗ as a function of the strength of the anharmonicity
ξ (solid line). Here, W , H and E are the same as in figure 4. The discontinuity is the result
of competition for the global minimum between several local minima, see figure 4. The dashed
line is the result of the first-order perturbation theory (section 6). After the first discontinuity
occurs at ξ = 0.53, this linear approximation completely fails. There are appreciable errors of this
approximation even at ξ > 0.2 due to the presence of quadratic terms.

particularly simple form of equations (20) and (21). In the harmonic approximation, equations
(25) and (26) replace equations (20) and (21) allowing for a closed form, exact solution.

In the harmonic approximation, the parameters characterizing the transition are the energy
gap E, the normalized displacements {Xi} between the acceptor and donor potential surfaces
and the parameters {αi}. For a small energy gap, the transition is almost vertical and the
accepting modes are the displaced ones. For a large energy gap, the major accepting mode is
the one with the smallest α, in general, some mixed coordinate and momentum for which the
initial distribution comes closest to the final energy surface.

The richness of possible phenomena and excitations comes about from the transformation
of coordinates from the mathematically accessible ones to the physical coordinates of the
atoms in the molecule. Some simple examples have been presented.

The harmonic case is completely solved here. Future applications to harmonic models
of specific molecules is now a straightforward procedure. When nonharmonic potential
surfaces are known, it is possible to use the harmonic model and perturbatively correct the
anharmonicities, only if the anharmonicities are small. More complicated surfaces require a
numerical approach.

The predictive power of the jumping point for energy distribution between different
accepting modes has also been demonstrated. Predictions for the physical features of the
radiationless transition based on location of the jumping points deserve further study.
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